

СОДЕРЖАНИЕ

1. Особенности систем отопления и охлаждения климатическими панелями	2
2. Состав и массогабаритные характеристики	3
3. Отопительная мощность климатических панелей	4
4. Охлаждающая мощность климатических панелей	4
5. Данные по температуре точки росы	5
6. Объём и тип теплоносителя в панелях Smart-Pro	5
7. Подключение климатических панелей	6
8. Установка климатических панелей Smart-Pro	1

ОСОБЕННОСТИ СИСТЕМ ОТОПЛЕНИЯ И ОХЛАЖДЕНИЯ КЛИМАТИЧЕСКИМИ ПАНЕЛЯМИ

Климатические панели основную часть теплоты передают благодаря лучистому излучению и часть за счет конвекции. Теплоносителем в системе является вода или незамерзающая жидкость, которая распределяется по трубопроводу панели.

В свою очередь, поверхность передает тепло предметам в помещении, которые обогревает его.

Преимущество системы – передача непосредственно энергии для обогрева предметов, пола и стен (в том числе человека) без нагрева воздуха.

Это позволяет снизить температуру воздуха и улучшить конвективную теплоотдачу организмом человека.

Равномерное распределения температуры в Уоздуха по высоте помещения и без перегрева потолочной зоны и недогрева зоны у пола, позволяет снизить температуру подачи теплоносителя и сделать комфортной и однородной температуру по всей высоте рабочей зоны. Для отопления помещения высотой потолков до 5,5 метров, необходимая температура теплоносителя лежит в пределах 35 – 55 °C.

Для охлаждения помещения,

в климатическую панель подается холодная вода (не ниже 15 °C). Имеющие более высокую температуру люди и предметы излучают тепло, которое поглощается панелями, теплый воздух в помещении поднимается вверх и отдает тепло охлаждающим панелям, после чего опускается вниз – к полу. Тем самым создается оптимальный и комфортный температурный режим без сквозняков и переохлажденных зон.

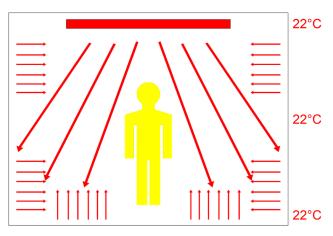


Схема обогрева помещения с помощью потолочных панелей

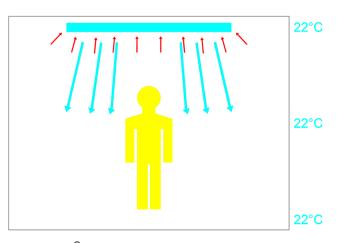
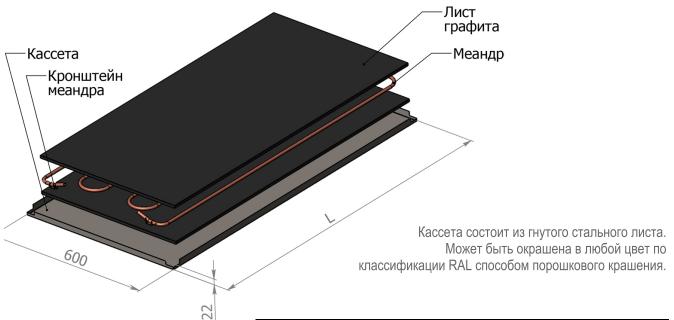



Схема охлаждения помещения с помощью потолочных панелей

СОСТАВ И МАССОГАБАРИТНЫЕ ХАРАКТЕРИСТИКИ


Состав климатической панели Smart-Pro.

Климатические панели Smart-Pro производятся со следующими массогабаритными характеристиками:

Наименование	Длина, мм	Ширина, мм	Высота, мм	Bec, кг
Smart-Pro 1200x600	1200	600	22	6
Smart-Pro 1800x600	1800	600	22	10
Smart-Pro 2400x600	2400	600	22	13

Климатические панели **Smart-Pro** соответствуют европейским стандартам и могут быть интегрированы в системы подвесных потолков типа Армстронг со скрытой системой крепления Clip-in.

Подвесной потолок со скрытой системой крепления Сlip-in

Отопительная мощность климатических панелей

Мощность отопления, Вт								
	° C	600×1200	600×1800	600×2400				
ΔT=+	15	140	212	284				
ΔT=+	16	151	228	306				
ΔT=+	17	162	245	328				
ΔT=+	18	173	261	350				
ΔT=+	19	184	278	373				
ΔT=+	20	195	295	396				
ΔT=+	21	206	312	419				
ΔT=+	22	217	329	442				
ΔT=+	23	229	347	465				
ΔT=+	24	240	364	488				
ΔT=+	25	252	382	512				
ΔT=+	26	264	399	536				
ΔT=+	27	275 417		560				
ΔT=+	28	287	435	584				
ΔT=+	29	299	453	608				
ΔT=+	30	311						
ΔT=+	32	335						
ΔT=+	34	359	359 544					
ΔT=+	36	384	581	780				
ΔT=+	38	409	619	830				
ΔT=+	40	434	657	881				
ΔT=+	41	446	676	906				
ΔT=+	42	459	695	932				
ΔT=+	43	471	714	957				
ΔT=+	44			983				
ΔT=+	45			1009				
ΔT=+	46			1035				
ΔT=+	47	522 791 10		1061				
ΔT=+	48	535	810	1087				
ΔT=+	49	548	830	1113				
ΔT=+	50	561	849	1139				

Охлаждающая мощность климатических панелей

Мощность охлаждения, Вт									
	° C 600×1200 600×1800 600×2400								
ΔΤ=	5	42	63	84					
ΔT=	6	53	79	105					
ΔΤ=	7	63	95	126					
ΔΤ=	8	74	111	148					
ΔΤ=	9	85	128	171					
ΔΤ=	10	97	145	194					
ΔΤ=	11	109	163	217					
ΔΤ=	12	121	181	241					
ΔΤ=	13	133	199	266					
ΔΤ=	15	158	237	316					

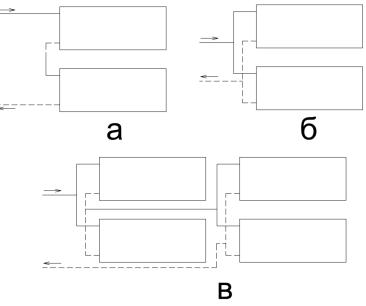
Данные по температуре точки росы

Темп ерату ра возду ха	Относительная влажность воздуха													
	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%
+10°C	-6,7	-5,2	-3,2	-1,7	-0,3	+0,8	+2,2	+3,2	+4,4	+5,5	+6,4	+7,3	+8,2	+9,1
+11°C	-6,0	-4,0	-2,4	-0,9	+0,5	+1,8	+3,0	+4,2	+5,3	+6,3	+7,4	+8,3	+9,2	+10,1
+12°C	-4,9	-3,3	-1,6	-0,1	+1,6	+2,8	+4,1	+5,2	6,3	+7,5	+8,6	+9,5	+10,4	+11,7
+13°C	-4,3	-2,5	-0,7	+0,7	+2,2	+3,6	+5,2	+6,4	+7,5	+8,4	+9,5	+10,5	+11,5	+12,3
+14°C	-3,7	-1,7	-0,0	+1,5	+3,0	+4,5	+5,8	+7,0	+8,2	+9,3	+10,3	+11,2	+12,1	+13,1
+15°C	-2,9	-1,0	+0,8	+2,4	+4,0	+5,5	+6,7	+8,0	+9,2	+10,2	+11,2	+12,2	+13,1	+14,1
+16°C	-2,1	-0,1	+1,5	+3,2	+5,0	+6,3	+7,6	+9,0	+10,2	+11,3	+12,2	+13,2	+14,2	+15,1
+17°C	-1,3	+0,6	+2,5	+4,3	+5,9	+7,2	+8,8	+10,0	+11,2	+12,2	+13,5	+14,3	+15,2	+16,6
+18°C	-0,5	+1,5	+3,2	+5,3	+6,8	+8,2	+9,6	+11,0	+12,2	+13,2	+14,2	+15,3	+16,2	+17,1
+19°C	+0,3	+2,2	+4,2	+6,0	+7,7	+9,2	+10,5	+11,7	+13,0	+14,2	+15,2	+16,3	+17,2	+18,1
+20°C	+1,0	+3,1	+5,2	+7,0	+8,7	+10,2	+11,5	+12,8	+14,0	+15,2	+16,2	+17,2	+18,1	+19,1
+21°C	+1,8	+4,0	+6,0	+7,9	+9,5	+11,1	+12,4	+13,5	+15,0	+16,2	+17,2	+18,1	+19,1	+20,0
+22°C	+2,5	+5,0	+6,9	+8,8	+10,5	+11,9	+13,5	+14,8	+16,0	+17,0	+18,0	+19,0	+20,0	+21,0
+23°C	+3,5	+5,7	+7,8	+9,8	+11,5	+12,9	+14,3	+15,7	+16,9	+18,1	+19,1	+20,0	+21,0	+22,0
+24°C	+4,3	+6,7	+8,8	+10,8	+12,3	+13,8	+15,3	+16,5	+17,8	+19,0	+20,1	+21,1	+22,0	23
+25°C	+5,2	+7,5	+9,7	+11,5	+13,1	+14,7	+16,2	+17,5	+18,8	+20,0	+21,1	+22,1	+23,0	+24,0
+26°C	+6,0	+8,5	+10,6	+12,4	+14,2	+15,8	+17,2	+18,5	+19,8	+21,0	+22,2	+23,1	+24,1	+25,1
+27°C	+6,9	+9,5	+11,4	+13,3	+15,2	+16,5	+18,1	+19,5	+20,7	+21,9	+23,1	+24,1	+25,0	+26,1
+28°C	+7,7	+10,2	+12,2	+14,2	+16,0	+17,5	+19,0	+20,5	+21,7	+22,8	+24,0	+25,1	+26,1	+27,0
+29°C	+8,7	+11,1	+13,1	+15,1	+16,8	+18,5	+19,9	+21,3	+22,5	+24,1	+25,0	+26,0	+27,0	+28,0
+30°C	+9,5	+11,8	+13,9	+16,0	+17,7	+19,7	+21,3	+22,5	+23,8	+25,0	+26,1	+27,1	+28,1	+29,0
+32°C	+11,2	+13,8	+16,0	+17,9	+19,7	+21,4	+22,8	+24,3	+25,6	+26,7	+28,0	+29,2	+30,2	+31,1
+34°C	+12,5	+15,2	+17,2	+19,2	+21,4	+22,8	+24,2	+25,7	+27,0	+28,3	+29,4	+31,1	+31,9	+33,0
+36°C	+14,6	+17,1	+19,4	+21,5	+23,2	+25,0	+26,3	+28,0	+29,3	+30,7	+31,8	+32,8	+34,0	+35,1
+38°C	+16,3	+18,8	+21,3	+23,4	+25,1	+26,7	+28,3	+29,9	+31,2	+32,3	+33,5	+34,6	+35,7	+36,9
+40°C	+17,9	+20,6	22,6	+25,0	+26,9	+28,7	+30,3	+31,7	+33,0	+34,3	+35,6	+36,8	+38,0	+39,0

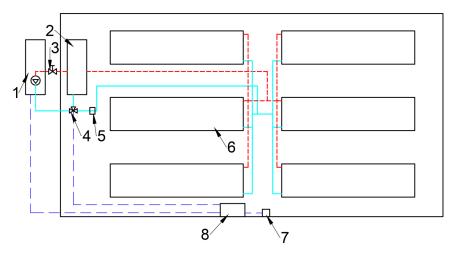
ТЕПЛОНОСИТЕЛИ

Объём и тип теплоносителя в панелях Smart-Pro

Во климатических панелях **Smart-Pro** можно использовать как воду, так и различные виды незамерзающих жидкостей – водно-гликолевые растворы, например, пропиленгликоль. При подключение панелей через теплообменник с чиллером, контур чиллера необходимо заполнять пропиленгликолем, что бы в зимний период не произошло промерзания контура.


Климатические панели Smart-Pro имеют следующий объём трубопровода:

Наименование	Объём, л
Smart-Pro 1200x600	0,36
Smart-Pro 1800x600	0,54
Smart-Pro 2400x600	0,72


Существуют различные типа подключения климатических панелей:

- **1.** Последовательное соединение применяется в помещениях классов школ, спортзалов, торговых и выставочных площадей (см. рис. 4a).
- 2. Параллельно-последовательное соединение применяется в презентационных и выставочных залах, столовых и кафе, банковских помещениях (см. рис. 46).
- **3.** Параллельное соединение применяется в помещениях офисов, приемных и конференц-залах (см. рис. 4в).

Способы подключения панелей к магистрали.

Ниже представлен вариант подключения панелей к моноблочному чиллеру в офисном помещении:

Вариант подключения климатических панелей.

Чиллер 1 подаёт хладагент на трёхходовой кран 4.

Трёхходовой кран переводит поток на компенсационный бак 2 (малый контур: бак-чиллер) либо на панели 6 (большой контур: чиллер-панели-бак). На входе в панели стоит датчик точки росы 5 для предотвращения образования конденсата на трубопроводе. При открытии крана 3 производится заливка или слив хладагента.

Блок управления 8 принимает информацию с датчика точки росы, комнатного датчика температуры 7 и датчиков чиллера, а также управляет чиллером и трёхходовым краном.

Моноблочный чиллер.

Объём компенсационного бака подбирается с учётом характеристик чиллера (можно уточнить у производителя или официального дилера) и объёма системы.

В любой разветвленной системе отопления для эффективной работы необходимо правильное распределение потока теплоносителя.

Для систем с использованием однотипных панелей и, соответственно, с одинаковым расходом теплоносителя на панель целесообразно применение схемы с попутным движением теплоносителя.

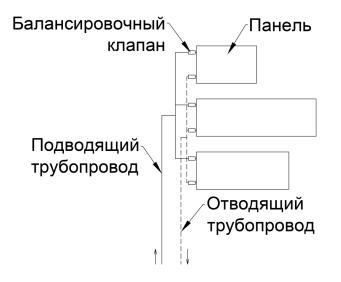
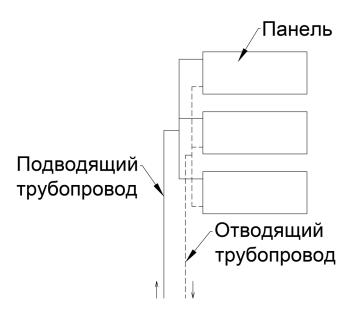
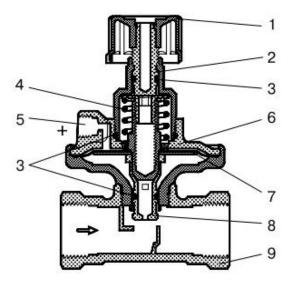


Схема с использованием балансировочного клапана.

Для небольших помещений используют моноблочные чиллеры.




Схема с попутным движением теплоносителя.

При наличии большого количества климатических панелей в системах нагрева и охлаждения, при использовании панелей разного типа, а также, если ветви при панелях имеют различную длину, используются автоматические балансировочные клапаны.

Стандартный балансировочный клапан

- 1. Рукоятка.
- 2. Шпиндель настройки перепада давлений.
- 3. Кольцевое уплотнение.
- 4. Пружина.
- 5. Штуцер для импульсной трубки.
- 6. Диафрагменный элемент.
- 7. Регулирующая диафрагма.
- 8. Разгруженный по давлению кону клапана.
- 9. Корпус клапана.

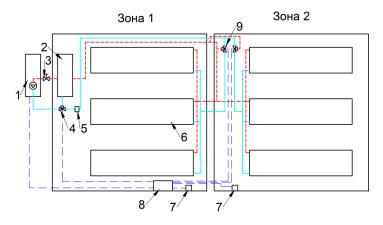
Автоматический балансировочный клапан

Один из вариантов датчика точки росы – датчик UAFT/A

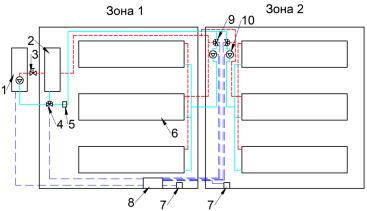
UAFT/А — универсальный 2х канальный измеритель параметров влажности воздуха и температуры с преобразователем выходного сигнала. Прибор измеряет температуру воздуха (1й канал) и, по выбору, относительную влажность, абсолютную влажность, влагосодержание или температуру точки росы (2й канал). Измеренные сигналы температуры и параметров влажности преобразуются в линейные активные выходные сигналы 0-10 В или 4-20 мА.

Датчик точки росы UAFT/A

Блок управления системой нагрева и охлаждения


На блоке управления системой нагрева и охлаждения размещены 2 контроллера. Верхний – для задания температуры в помещении, нижний – для переключения режимов нагрев/охлаждение/циркуляция без изменения температуры. Так же на блоке размещены кнопка переключения с большого контура на малый и индикация данных о работе системы и наличии точки росы.

Блок управления системой нагрева и охлаждения.


При необходимости осуществлять зональное регулирование, возможно применять схемы с использованием дополнительных комнатных датчиков температуры, дополнительных кранов с приводами и дополнительных насосов.

При необходимости отключить от основного контура одну из зон, переключается один из кранов 9. При этом включается один из насосов 10, для обеспечения циркуляции и поддержания достигнутой температуры.

Зональное регулирование с применением дополнительных кранов и комнатных температурных датчиков

При необходимости отключить от основного контура одну из зон, переключается один из кранов 9.

Зональное регулирование с применением дополнительных насосов, кранов и комнатных температурных датчиков.

При монтаже системы рекомендуется использование пуш-фиттингов:

- **1.** Позволяет производить оперативный и простой монтаж.
- **2.** Установка, в том числе в неудобных местах, может выполняться в одиночку.
- **3.** Герметичность и качество соединения. Система, в монтаже которой применялись данные элементы, может быть замурована, установлена под бетоном. Такую конструкцию разрешается маскировать, ведь соединения очень надежны, а потому нет необходимости заботиться о постоянном доступе к ним.
- **4.** Возможен демонтаж и вторичное использование.
- **5.** Безопасность.
- **6.** Простота крепления.
- 7. Универсальность в использовании.
- **8.** Соединение получается не только прочным, но и долговечным.

Быстросъёмные фитинги.

ЖАТНОМ

Установка климатических панелей Smart-Pro

Монтаж подвесных потолков со скрытой подвесной системой осуществляется с использованием профиля ПП 47х26 (усиленная схема) и без использования профиля ПП 47х26 (простая схема).

При монтаже климатических панелей Smart-Pro рекомендуется монтаж по усиленной схеме, поскольку панели тяжелее пустых кассет и требуют от каркаса дополнительной жёсткости.

Ниже изображена общая схема установки подвесного потолка со скрытой подвесной системой.

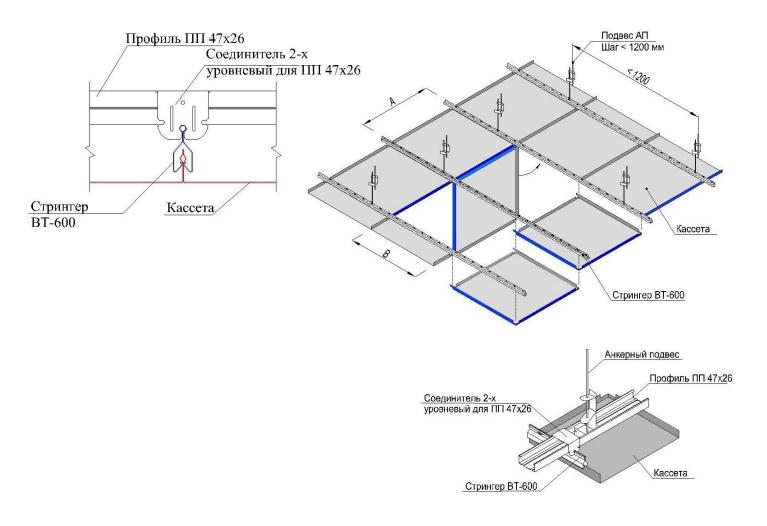


Схема установки подвесного потолка с системой крепления Сlip-in.

АО «УНИХИМТЕК» Московская область, г. Подольск, мкр. Климовск, ул. Заводская, д.2 Тел.: +7 (916) 419-49-66 e-mail: info@unichimtek.com www.c-lifepanel.ru

